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9. Elastic Instability (Buckling) 
 

Learning Summary 

1. Be able to apply Macaulay’s method for determining beam deflection in situations 

with axial loading (application); 

2. Know the meanings of and the differences between stable, unstable and neutral 

equilibria (knowledge); 

3. Be able to determine the buckling loads for ideal struts (application); 

4. Be able to include the interaction of yield behaviour with buckling and how to 

represent this interaction graphically (knowledge/application). 

 

9.1 Introduction 

For many structural problems, it is reasonable to assume that the system is in stable 

equilibrium. However, not all structural arrangements are stable.  For example, consider 

a one-meter long stick with the cross-sectional area of a pencil. If this stick were stood on 

its end, the axial stress would be small, but the stick could easily topple over sideways. 

This simple example demonstrates that in some configurations, stability considerations 

can be primary.  

This section is concerned with the stability of struts. Struts are compression members 

with cross-sectional dimensions which are small compared to the length, i.e., they are 

slender. If a circular rod of, say, 5mm diameter, which has its ends machined flat and 

perpendicular to the axis, were made 10mm long to act as a column, there would not 

be a problem of instability and it could carry considerable force.  However, if the same 

rod were made a meter long, the rod would become laterally unstable at a much smaller 

applied force and could collapse.  

Buckling also occurs in many other situations with compressive forces. Examples 

include thin sheets which have no problem carrying tensile loads and vacuum tanks, 

as well as submarine hulls. Thin-walled tubes can wrinkle like paper when subjected to 

torque.  

 

9.2 Buckling Phenomenon 
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Consider the response of a marble when subjected to disturbances from an initial 

equilibrium position on different types of surfaces, as shown in Figure 9.1. If the surface 

is concave, the marble will return to its original equilibrium position and the marble is 

said to be in a stable equilibrium position; if the surface is flat the marble will move to 

another equilibrium position and the marble is said to be in a neutral equilibrium 

position.  Finally, if the surface is convex, the marble will roll off uncontrollably in an 

unstable fashion and the marble is said to be in an unstable equilibrium position.  

 

Figure 9.1. Equilibrium states for a marble on various surfaces 

 

This analogy is useful for understanding the energy approach to buckling problems. 

Every deformed structure has a potential energy associated with it, which depends on 

the strain energy stored in the structure and the work done by the external loads. A 

concave potential energy function at equilibrium gives a stable equilibrium while a 

convex potential energy function gives unstable equilibrium.  

Alternatively, buckling problems may be treated as bifurcation problems. Referring to 

Figure 9.2(a), it is clear that the tensile force will tend to restore the bar to equilibrium 

if there is a slight displacement to the right. However, the same bar under the action of 

a compressive force, Figure 9.2(b), will continue to fall when subjected to a slight 

displacement. This illustrates unstable equilibrium.  

 

 

 

 

 
 Stable equilibrium position     Neutral equilibrium position     Unstable equilibrium position 
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Figure 9.2. Examples of stable and unstable equilibrium 

 

Figure 9.3 illustrates a slightly more complicated example of the same phenomenon. 

The vertical bar is supported horizontally by two springs of stiffness, k. If the bar of 

length L, is displaced a small amount, x, horizontally, there is a displacing moment of 

Px about O and a restoring moment 2kxL. Hence we get Px < 2kxL for stable 

equilibrium and Px > 2kxL for unstable equilibrium. 

 

The critical condition occurs when  or , where PBcB is 

termed the critical load between stable and unstable equilibrium.  

 

kxLPx 2= kLPc 2=
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Figure 9.3. Axially loaded rigid bar with transverse springs 

 

Figure 9.4 shows a rigid bar subjected to a compressive axial load with a torsional 

spring at its base; a free body diagram of the problem is also shown.  Taking moments 

about the point O, gives: 

 

     

 

 

Figure 9.4. Rigid bar supported by a torsional spring 
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Figure 9.5 shows a graph of  versus . There is a stable region for low loads and 

an unstable region for high loads. Below point A, the bar will return to its equilibrium 

position if rotated slightly to either the right or left. Once the load exceeds the value at 

point A, then any disturbance will cause the bar to rotate along either the right branch 

or the left branch of the bifurcation curve. Point A is called the bifurcation point, at which 

there are three possible solutions. The associated load at point A is called the critical 

(buckling) load, q = 0o is the trivial solution. Only non-trivial solutions are generally of 

interest, i.e. for q ¹ 0o
P 

 

 

 

Figure 9.5. Variation of PL/Kσ with θ, indicating stable and unstable regions 

 

9.3 Ideal struts 

Ideal struts are assumed to be initially perfectly straight and of uniform section properties, 

and subjected to purely axial loading. Expressions will be developed relating the critical 

buckling load to the applied load, the material properties and the member dimensions, for 

different support conditions of the struts. At a critical load, members which are circular or 

tubular in cross-section will buckle sideways in any direction. Often, compression 

members do not have equal flexural rigidity, EI, in all directions and there will be one axis 

qK
PL q

A
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about which the flexural rigidity is a minimum, depending on the dimensions. The member 

will therefore buckle about this axis and the I-value (second moment of area) referred to 

in the present section is assumed to be the minimum value, based on the nominal 

dimensions of the member. 

 

9.3.1 Case 1: Hinged-Hinged 

Consider an initially straight strut with its ends free to rotate around frictionless pins, as 

shown in Figure 9.6, which will be referred to as a hinged-hinged case.  The dashed line 

represents the initially straight strut.  The strut is now considered to be perturbed, from its 

initially straight position, as shown in Figure 9.6.  This perturbation is equivalent to the 

movement of the marble in Figure 9.1. 

 

 
Figure 9.6. A hinged-hinged strut 

 

The bending moment, M, depends on the deflection, y, and is hence a function of position, 

x. 

 

 
Figure 9.7. Free body diagram for the left hand portion of the strut 

 

The deflection, y, is related to the moment M, by the relationships: 

  and  
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Therefore,  or , where . 

 

The solution to a second order differential equation of this form is:  

 

 

In order to determine A and B, we need two "boundary conditions", i.e.  

1. at x = 0 y = 0, and  

2. at x = l,  y = 0 

 

Therefore, B = 0 and Asin(al) = 0 

 

The condition A = 0 results in a trivial solution, i.e. y = 0, which is the case for an un-

deflected strut. Hence, the non-trivial solution is sin(al) = 0, which gives al = np,  where n 

= 0, 1, 2... 

 

 

 

n = 0 gives another trivial solution, i.e. P = 0, 

 

n = 1 gives:   

 

This is called the Euler buckling (or crippling) load, PBc, it is the lowest load at which 

buckling can occur (Euler solved this problem in 1757).  

 

n = 2 gives:   
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and this corresponds to a different deflected (buckling) shape of the strut.  

 

For n = 1, at and therefore  and the deflected shape of the strut 

is given by the following expression: 

 

  

 

The magnitude of yBmax cannot be determined from the boundary conditions and it can 

become arbitrarily large, leading to elastic instability of the structure. The first three 

buckling mode shapes are shown in Figure 9.8. If buckling mode I is prevented from 

occurring by installing a restraint (support), then the column would buckle at the next 

higher mode at critical load values that are higher than for the lower mode. The inflexion 

points, I, for each deflection curve has zero deflection. Recalling that the curvature  

at an inflexion point is zero indicates that the internal moment at these points is zero. If 

roller supports are put at any other point than Point I, the boundary value problem must 

be solved for new eigenvalues (buckling loads) and eigenvectors (mode shapes).  
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Figure 9.8. Buckling mode shapes for a hinged-hinged strut with n=1, n=2 and n=3 

 

 

9.3.2 Case 2: Free-Fixed 

Figure 9.9 shows the deflected shape and free-body diagram for a fixed-free strut. 
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Figure 9.9. A fixed free strut 

 

 and  

 

The solution to this differential equation is: 

 

 

Boundary conditions: 

1. At  x = 0, y = 0  B = 0, and 

2. at x = l,   Aacos(al) = 0 

 

So far, the mathematical solution is identical to that of a free-free strut.  However, the 

boundary conditions are different, i.e. in this case, A = 0 or a = 0, leading to  trivial 

solutions (as before).  The non-trivial solution results from taking cos(al) = 0, which implies 

that , i.e. 
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The smallest, non-trivial, value of P occurs with n = 1, i.e. 

 

 

 

By comparison with Case 1, i.e., the hinged-hinged case, it can be seen that the solution 

is the same except that "l" is replaced by "2l", i.e. the fixed-free case can be treated as 

the hinged-hinged case for a strut with an equivalent length of 2l.   

 
9.3.3 Case 3: Fixed-Fixed 

 
Figure 9.10. A fixed-fixed strut 

 

The solution procedure is the same as that for Cases 1 and 2, leading to:- 

 

  

 

The fixed-fixed case shows a significant increase in the buckling capacity relative to the 

hinged-hinged case.  
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Figure 9.11. A fixed-hinged strut 

 

 

 

This case differs from the previous examples in that a transverse force, R, shown in  

Figure 9.11, is necessary to create this mode of deformation. 
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The solution to this type of differential equation consists of two parts, a homogenous 

solution and a particular integral. The homogeneous solution is given by the following: 
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The particular integral for such 2nd order differential equations is generally obtained by 

taking: 

 

 

where:  

 

 

And substituting for y in the differential equation gives the solution for C.  In this particular 

case, f(x) = x, so that: 

 

 

Hence, the complete solution is: 

 

 

 

 

 

There are three unknowns this time, i.e. A, B and R. Therefore, we need three boundary 
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The smallest non-trivial root to this equation is 
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9.4 Summary of Euler buckling loads of struts 

 

General formula:  

 

Description Schematic 
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Effective 
length, 
LBeffB 

Free-fixed 

 

 2l 

Hinged-

hinged  
 

  

Fixed-hinged  

 

  

Fixed-fixed  

 

  

 

The effective length, LBeffB, is a measure of how much longer (and thus more unstable) a 

given strut configuration appears to be in terms of critical buckling load, relative to the 
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9.5 Some important notes 

1) In contrast to the classical cases considered here, actual compression members are 

seldom truly pinned or completely fixed against rotation at the ends. Because of this 

uncertainty regarding the fixity of the ends, struts or columns are often assumed to 

be pin-ended. This procedure is conservative.  

2) The above equations are not applicable in the inelastic range, i.e. for s > sByB, and 

must be modified. 

3) The critical load formulae for struts or columns are remarkable in that they do not 

contain any strength property of the material and yet they determine the load 

carrying capacity of the member. The only material property required is the elastic 

modulus, E, which is a measure of the stiffness of the strut. 

 
9.6 Compressive loading of rods 

If we assume that the rod loading is perfectly axial, and the material can be represented 

by an elastic-perfectly plastic stress-strain curve (see Figure 9.12), then the plastic 

collapse failure would occur in compression if   reaches -  before the buckling 

load is reached. 

 

 
Figure 9.12. Tensile test specimen and elastic perfectly plastic stress-strain 

behaviour 
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and defining the second moment of area, I, as:  

 

where k is the radius of gyration, gives: 

 

 

 

and  

 

l/k is the slenderness ratio.  

 

Therefore, buckling will occur if , whereas plastic collapse will occur if 

.  

 

This can be represented diagrammatically as shown in Figure 9.13. 
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Figure 9.13. Plot of σ versus l/k indicating the buckling and plastic collapse regions. 


